DOE - ARM / NASA- GPM

Midlatitude Continental Convective Cloud Experiment (MC³E)

- ·SGP
- ·May June 2011

Michael Jensen (BNL), Pavlos Kollias (McGill)

Anthony Del Genio (NASA GISS) Scott Giangrande (McGill)

Partnering with NASA GPM, CASA, NSF DC-3, Oklahoma University, NSSL, OK Climate Survey, NASA CloudSat

ARM Key Science question #4: How do radiative processes interact with dynamical and hydrological processes to produce cloud feedbacks that regulate climate change?

Goal: Improve climate models!!

Elements Convective Parameterization

- 1) Pre-convective environment
- 2) Convective Intiation
- 3) Updraft/Downdraft Dynamics
- 4) Condensate Transport/Detrainment
- 5) Precipitation/Cloud microphysics
- 6) Influence on environment
- 7) Influence on Radiation
- 8) Large-scale forcing

Big Question: Given PBL (T,q) and vertical profiles, can the precipitation at the ground be predicted? (A. D. Del Genio)

CASA IP1 Radar array and ARM RWP locations

ARM-funded IOP Measurement Priorities

Model Forcing Dataset

Sounding network

Appropriate for determining continuous forcing dataset

4D Atmospheric state description

Soundings (Array and soundings of opportunity)

Radar Refractivity

Surface Observations

4D Cloud and Precipitation characteristics

CASA, CIRPAS 9.4 Ghz Phased-Array, McGill scanning 94-GHz, ARM SBIR scanning 35-GHz

Updraft/Downdraft dynamics

CASA, 915 MHz wind profilers, cloud radars

NASA-Provided Infrastructure

<u>Calibrated</u> measurement continuity across full spectrum of precip. rates/types

Ka-Ku Scanning Transportable Dual-Polarimetric Radar (dual-aperture)

- Match DPR frequencies, direct link to PIA and dual-wavelength vs. dual-pol methods
- Extension to clouds, light precipitation, and improved sampling of ice, snow, mixed phase
- Mobility enables placement in variety of network configurations/regimes with relative ease

NASA PMM N-POL S-band Scanning Dual-Polarimetric Radar

- Transmitter, receiver, and antenna upgrades completed by fall 2010.
- Transportable platform for study of heavy/moderate precipitation regimes
- Dual-pol retrieval of 3-D DSD information and qualitative ice microphysics information

2D Video Disdrometer (or other TBD) Dense Array, supplemented by rain gauges

- Validation/extension of GV satellite simulator and ground radar DSD retrievals/precipitation rates (liquid/frozen)
- Spatial/temporal covariance of particle size distributions and precipitation rates

Wind Profiler

Vertical profiles of Z, DSD collocated with disdrometers under coverage umbrella of radar

Aircraft

- High altitude (ER-2 w/ GMI and DPR simulators)
 Aircraft already reserved
- In-situ AC (e.g., UND Citation) for microphysics
 Cost estimate obtained

Other Known (CloudSat): W-band radar w/RHI-scanning/V-pointing

An Opportunity for the ARM program

 Unprecedented 4-D observations of convective clouds and environment

State-of-the art 3D scanning observations

 Foster collaborations with NASA-GPM, CASA, OU, NSSL

Leverage existing climatological observations