Status of Proteus Microphysics Greg McFarquhar¹, Junshik Um¹, Matt Freer¹, Greg Kok², Jay Mace³, Tim Tooman⁴, Robert McCoy⁴ ¹University of Illinois, Urbana, IL ²DMT, Boulder, CO ³ University of Utah, Salt Lake City, UT ⁴Sandia National Laboratories, Livermore, CA ### **Summary of Probes** | Instrument | Size Range | Parameters | Description | | | |---|-------------------------------|--------------------------------------|--|--|--| | Cloud Particle
Imager (CPI) | 10 μm to ~ 1 mm | 2.3 μm res images,
SDs | Small sample volume | | | | Cloud Aerosol
Spectrometer
(CAS) | 0.35 to 50 μm | SDs | Forward scattering probe: enhanced small crystals? | | | | Cloud Droplet
Probe (CDP) | 1 to 50 μm | SDs | Forward scattering probe: open path | | | | Cloud Imaging
Probe (CIP) | 100 μm to 1.6 mm | SDs; two-d images | Shadowing of photodiodes | | | | Counterflow virtual im-pactor (CVI) | Bulk measurement from >~ 5 μm | TWC | Evaporator probe | | | | Nevzorov Probe | Bulk measurement | LWC, TWC | Hot wire probe | | | | CIN: Cloud
Integrating
Nephelometer | Bulk measurement | β _e , asymmetry parameter | Light scattered by cloud particles | | | | | Aircraft | Mission | Radar | Lldar | CAPS | CSI | CIN | State & CPI | |------|----------------------------------|------------------------------------|---|----------|----------------------------|----------------------------|--|---| | 1/22 | Twin Otter
Egrett | Fresh
Anvil SW
of Darwin | Fine* (some changes in noise between days) | OK | | | | | | 1/23 | Twin Otter
Egrett | Maritime
System | Fine | OK | | | | | | 1/25 | Proteus*
Twin Otter
Egrett | NE-SW
legs along
coast | Some odd data
(Otter warm and
flew > 10,000 ft) | PRIORITY | | CSI flow
low | Missing for
all but 1 st
hour | CPI Missing sections due to freeze up | | 1/27 | Proteus*
Twin Otter
Egrett | Aged
cirrus over:
ARM/coast | Fine | PRIORITY | Part missing ok for spiral | | CIN
started
after spiral | | | 1/29 | Proteus
Twin Otter | Aged
cirrus land-
locked low | Fine | PRIORITY | | CSI data
may be
high | missing | GPS altitude bad;
use pressure
altitude | | 2/2 | Twin Otter
Proteus
Dimona | Convective event over Tiwis | Fine | ОК | | | missing | | | 2/3 | Twin Otter | Terra | FIne | ОК | | | | | | 2/6 | Proteus
Twin Otter
Egrett | Hector
system | Fine | OK | CIP partial | | | | | 2/8 | Twin Otter
Egrett | West end of Tiwis | Fine | PRIORITY | | | | | | 2/9 | Twin Otter
Egrett | Survey
over Tiwis | Fine | OK | | | | | | 2/10 | Proteus
Egrett
Twin Otter | Hector
anvil over
Tiwis | Fine | PRIORITY | CIP partial | | | | | 2/12 | Proteus | | Fine | PRIORITY | CIP N/A | | | | CPI: Quality controlled images - CPI: Quality controlled images - CVI: IWC (delayed flow at lower pressures gives roll off in IWC) - Nevzorov probe: LWC and TWC (offsets not removed; TWC may be biased low) - CPI: Quality controlled images - CVI: IWC (delayed flow at lower pressures gives roll off in IWC) - Nevzorov probe: LWC and TWC (offsets not removed) - CIN: βe (estimates of g will follow) - CPI: Quality controlled images - CVI: IWC (delayed flow at lower pressures gives roll off in IWC) - Nevzorov probe: LWC and TWC (offsets not removed) - CIN: βe (estimates of g will follow) - CAPS: SDs from CAS & CIP - CDP: SDs will follow in near future ## **Data Processing** Standard algorithms for all probes except for CIP, where hollow images are identified **Identify hollows**: if unlit diodes in middle of slice, particle hollow if end slice covers > 40% of hole **Hollow:** Not hollow: - Removal of hollows has big impact on N(D) of particles with D > ~ 200 μm - Currently adding correction for hollows based on Korolev #### **Summary of Flights** Conditions from 3 flights where we have best set of data: 27 January: Horizontal profiles through aged cirrus of varying lifetimes 29 January: Horizontal profiles looking at transition of anvil cirrus to more generic cirrus 2 February: Spiral ascents/descents in fresh anvils